Artificial intelligence (AI) powered framework for plantation volume estimation: a case study in teak (*Tectona grandis*)

Dr. Ani A. Elias

ICFRE-Institute of Forest Genetics and Tree Breeding, India

HelixOmics Analytics, India

October 22, 2025

Vision

Transforming tropical forestry management through Artificial Intelligence

 maintaining accuracy, enabling transparency, and sustainability from standing trees to market-ready logs.

Photos from https://www.greentnmission.com/

Motivation

- Field inventory in a plantation is an essential element in management and decision making
 - Important to assess growth, harvestable timber volume, plan on transportation logistics of harvested timber, and facilitate 'standing auction'
- Estimation of volume using images from the field
 - Application in a smartphone
 - Real-time, compact, intuitive, and cost-effective
- Estimation of volume of harvested logs
 - End-to-end traceability and real-time inventory assessment across timber yards, felling sites, depots,...
- Feasibility
 - Proof of Concept (POC) developed
 - Python scripts to be integrated into a user interface

Methods – case study in Kerala

- Existing method
 - $20 \times 20 \text{ m}^2$ sample plot per 2 ha of plantation
 - Measure the girth at breast height (GBH) for the trees
 - Volume calculation using volume table

- Developing method
 - 20 × 20 m² sample plot per 2 ha of plantation
 - Take images
 - Use convolutional neural network (CNN) model
 - Tree identification
 - Diameter detection and GBH calculation
 - Volume calculation using volume table

CNN Model and transfer learning

General framework of convolution

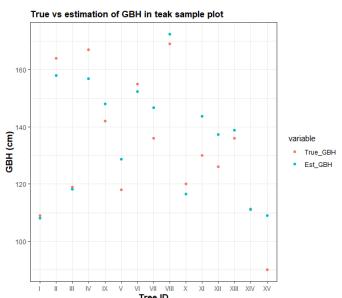
$$G[m,n] = (f*h)[m,n] = \sum_{j} \sum_{k} h[j,k] f[m-j,n-k]$$

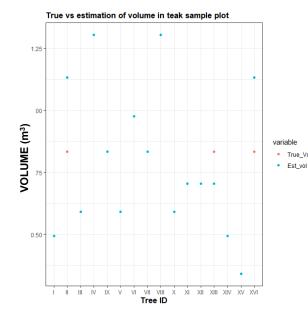
Where G is the feature image; f and h are the input image and the kernel; m and n are the row and column indices of feature image; j and k are the indices of kernel

Tree Identification – Darknet framework

- Compatible framework
 - Fewer manageable configuration
- Work in low-computational devices
 - Eg., Mobile phones

Diameter detection – Deterministic framework


- Deterministic
 - Bounding box & edge detection
 - Pre-processing shades of color
 - Geometric analysis
- Lightweight framework
 - Compatible to a mobile phone



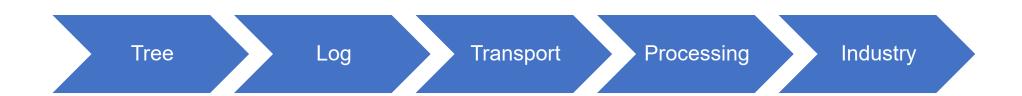
Al method is significantly faster and independent of the number of trees present in the plot

Underestimation of 3.5 cm on an average in GBH estimation.

Existing method (Time α number of trees)Al method (Time 1 number of trees)30s per tree for measuring GBH and volume each
3 to 7.5 minutes per plot (6 to 15 trees per plot) for GBH
3 to 7.5 minutes for volume estimation
6 to 15 minutes in total3s for imaging; 28s for tree detection;
1 minute for GBH estimation
1 s for volume estimation
Less than 2 minutes in total

Work in progress

- Increase the accuracy of GBH estimation
 - In noisy environment
- Develop a mobile application
 - Real-time measurement from the field
- Expansion of use of the application
 - Apply on other species with available volume tables
 - Determine the volume of harvested logs



A game changer for forest departments, plantation owners, and timber traders

- Automated inventory of standing and harvested timber
 - A mobile application that can be used in the plantations
 - Rapid, scalable, consistent, and repeatable volume assessment across large areas
- Reduces reliance on intensive ground surveys
- Centralized geo-tagged repository for long-term tracking and carbon stock assessment
- Data-driven insights for resource optimization and planning
- Elimination of intermediaries, enabling fair pricing for farmers
- Transparent, efficient, and sustainable digital forestry management system

Integration with existing framework

- Unified digital ecosystem for the entire forestry supply chain
 - ITTO's Forest Information Systems (FIS)
- Continuity from plantation to end user

Thank you

- Kerala Forest Department
- ICFRE IFGTB
- HelixOmics Analytics

Ms. Anusiya (JRF)

